
iptel.org SIP Express Router v0.8.10 -- Admin’s Guide

Jiri Kuthan

Jan Janak

Yacine Rebahi

iptel.org SIP Express Router v0.8.10 -- Admin’s Guide
by Jiri Kuthan, Jan Janak, and Yacine Rebahi

Copyright © 2001, 2002 by FhG Fokus

The document describes the SIP Express Router and its use in SIP networks. It is intended as an
aid to server administrators.

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
For more details see the file COPYING in the source distribution of SER.

Table of Contents
1. General Information ..1

About SIP Express Router (SER) ..1
About iptel.org..1
Feature List..1
Use Cases...2

Added-Value ISP Services ...2
PC2Phone...3
PBX Replacement..3

About SIP Technology ...3
Known SER Limitations ..4
Licensing..4
Obtaining Technical Assistance..9
More Information ...10

2. Introduction to SER..11
Request Routing and SER Scripts ..11
Conditional Statements ...11

Operators and Operands ...12
URI Matching ..14

Request URI Rewriting..16
Destination Set..18
External Modules ...19
Writing Scripts ..21

Default Configuration Script...21
Stateful User Agent ..24
Redirect Server ..25
Executing External Script ..26
Reply Processing (Forward on Unavailable) ..27

3. Server Operation...29
Recommended Operational Practices ...29
HOWTOs ...32
Troubleshooting..41

4. Application Writing..43
Application FIFO Server ...43

5. Reference ..47
Core Options ...47
Core Commands...48
Command Line Parameters ..51
serctl command...52
Modules ...53
FIFO Commands Reference..56
Used Database Tables ..57

iii

iv

Chapter 1. General Information

About SIP Express Router (SER)
SIP Express Router (SER) is an industrial-strength, free VoIP server based on the Ses-
sion Initiation Protocol (SIP, RFC3261). It is engineered to power IP telephony infras-
tructures up to large scale. The server keeps track of users, sets up VoIP sessions,
relays instant messages and creates space for new plug-in applications. Its proven in-
teroperability guarantees seamless integration with components from other vendors,
eliminating the risk of a single-vendor trap. It has successfully participated in vari-
ous interoperability tests in which it worked with the products of other leading SIP
vendors.

The SIP Express Router enables a flexible plug-in model for new applications: Third
parties can easily link their plug-ins with the server code and provide thereby ad-
vanced and customized services. In this way, plug-ins such as SNMP support, RA-
DIUS accounting, or SMS gateway have already been developed and are provided as
advanced features. Other modules are underway: Presence server, firewall control,
and more.

Its performance and robustness allows it to serve millions of users and accommodate
needs of very large operators. With a $3000 dual-CPU PC, the SIP Express Router is
able to power IP telephony services in an area as large as the Bay Area during peak
hours. Even on an IPAQ PDA, the server withstands 150 calls per second (CPS)! The
server has been powering our iptel.org free SIP site withstanding heavy daily load
that is further increasing with the popularity of Microsoft’s Windows Messenger.

The SIP Express Router is extremely configurable to allow the creation of various
routing and admission policies as well as setting up new and customized services.
Its configurability allows it to serve many roles: network security barrier, application
server, or PSTN gateway guard for example.

ser can be also used with contributed applications. Currently, serweb , a
ser web interface, and SIPSak diagnostic tool are available. Visit our site,
http://www.iptel.org/, for more information on contributed packages.

About iptel.org
iptel.org is a know-how company spun off from Germany’s national research
company FhG Fokus. One of the first SIP implementations ever, low-QoS
enhancements, interoperability tests and VoIP-capable firewall control concepts are
examples of well-known FhG’s work.

iptel.org continues to keep this know-how leadership in SIP. The access rate of the
company’s site, a well-known source of technological information, is a best proof of
interest. Thousands of hits come every day from the whole Internet.

The iptel.org site, powered by SER, offers SIP services on the public Internet. Feel free
to apply for a free SIP account at http://www.iptel.org/user/ 2

Feature List
Based on the latest standards, the SIP Express Router (SER) includes support for reg-
istrar, proxy and redirect mode. Further it acts as an application server with sup-
port for instant messaging and presence including a 2G/SMS and Jabber gateway,
a call control policy language, call number translation, private dial plans and ac-
counting, authorization and authentication (AAA) services. SERruns on Sun/Solaris,
PC/Linux, PC/BSD, IPAQ/Linux platforms and supports both IPv4 and IPv6. Host-
ing multiple domains and database redundancy is supported.

1

Chapter 1. General Information

Other extensions are underway: presence server, firewall control and more.

ser has been carefully engineered with the following design objectives in mind:

• Speed - With ser , thousands of calls per seconds are achievable even on low-cost
platforms. This competitive capacity allows setting up networks which are inex-
pensive and easy to manage due to low number of devices required. The process-
ing capacity makes dealing with many stress factors easier. The stress factors may
include but are not limited to broken configurations and implementations, boot
avalanches on power-up, high-traffic applications such as presence, redundancy
replications and denial-of-service attacks.

The speed has been achieved by extensive code optimization, use of customized
code, ANSI C combined with assembly instructions and leveraging latest SIP im-
provements. When powered by a dual-CPU Linux PC, ser is able to process thou-
sands of calls per second, capacity needed to serve call signaling demands of Bay
Area population.

• Flexibility - SERallows its users to define its behavior. Administrators may write
textual scripts which determine SIP routing decisions, the main job of a proxy
server. They may use the script to configure numerous parameters and introduce
additional logic. For example, the scripts can determine for which destinations
record routing should be performed, who will be authenticated, which transac-
tions should be processed statefully, which requests will be proxied or redirected,
etc.

• Extensibility - SER’s extensibility allows linking of new C code to ser to redefine
or extend its logic. The new code can be developed independently on SER core
and linked to it in run-time. The concept is similar to the module concept known
for example in Apache Web server. Even such essential parts such as transaction
management have been developed as modules to keep the SERcore compact and
fast.

• Portability. ser has been written in ANSI C. It has been extensively tested on
PC/Linux and Sun/Solaris. Ports to BSD and IPAQ/Linux exist.

• Interoperability. ser is based on the open SIP standard. It has undergone extensive
tests with products of other vendors both in iptel.org labs and in the SIP Interoper-
ability Tests (SIPIT). ser powers the public iptel.org site 24 hours a day, 356 days a
year serving numerous SIP implementations using this site.

• Small size. Footprint of the core is 300k, add-on modules take up to 630k.

Use Cases
This section illustrates the most frequent uses of SIP. In all these scenarios, the SIP Ex-
press Router (SER) can be easily deployed as the glue connecting all SIP components
together, be it soft-phones, hard-phones, PSTN gateways or any other SIP-compliant
devices.

Added-Value ISP Services
To attract customers, ISPs frequently offer applications bundled with IP access. With
SIP, the providers can conveniently offer a variety of services running on top of a sin-
gle infrastructure. Particularly, deploying VoIP and instant messaging and presence
services is as easy as setting up a SIP server and guiding customers to use Windows
Messenger. Additionally, the ISPs may offer advanced services such as PSTN termi-

2

Chapter 1. General Information

nation, user-driven call handling or unified messaging all using the same infrastruc-
ture.

SIP Express Router has been engineered to power large scale networks: its capacity
can deal with large number of customers under high load caused by modern appli-
cations. Premium performance allows deploying a low number of boxes while keep-
ing investments and operational expenses extremely low. ISPs can offer SIP-based
instant messaging services and interface them to other instant messaging systems
(Jabber, SMS). VoIP can be easily integrated along with added-value services, such as
voicemail.

PC2Phone
Internet Telephony Service Providers (ITSPs) offer the service of interconnecting In-
ternet telephony users using PC softphone or appliances to PSTN. Particularly with
long-distance and international calls, competitive pricing can be achieved by routing
the calls over the Internet.

SIP Express Router can be easily configured to serve pc2phone users, distribute calls
to geographically appropriate PSTN gateway, act as a security barrier and keep track
of charging.

PBX Replacement
Replacing a traditional PBX in an enterprise can achieve reasonable savings. Enter-
prises can deploy a single infrastructure for both voice and data and bridge distant
locations over the Internet. Additionally, they can benefit of integration of voice and
data.

The SIP Express Router scales from SOHOs to large, international enterprises. Even
a single installation on a common PC is able to serve VoIP signaling of any world’s
enterprise. Its policy-based routing language makes implementation of numbering
plans of companies spread across the world very easy. ACL features allow for pro-
tection of PSTN gateway from unauthorized callers.

SIP Express Router’s support for programmable routing and accounting efficiently
allows for implementation of such a scenario.

About SIP Technology
The SIP protocol family is the technology which integrates services. With SIP, Internet
users can easily contact each other; figure out willingness to have a conversation and
couple different applications such as VoIP, video and instant messaging. Integration
with added-value services is seamless and easy. Examples include integration with
web (click-to-dial), E-mail (voice2email, UMS), and PSTN-like services (conditional
forwarding).

The core piece of the technology is the Session Initiation Protocol (SIP, RFC3261) stan-
dardized by IETF. Its main function is to establish communication sessions between
users connected to the public Internet and identified by e-mail-like addresses. One of
SIP’s greatest features is its transparent support for multiple applications: the same
infrastructure may be used for voice, video, gaming or instant messaging as well as
any other communication application.

There are numerous scenarios in which SIP is already deployed: PBX replacement al-
lows for deployment of single inexpensive infrastructure in enterprises; PC-2-phone
long-distance services (e.g., Deltathree) cut callers long-distance expenses; instant
messaging offered by public severs (e.g., iptel.org) combines voice and text services
with presence information. New deployment scenarios are underway: SIP is a part

3

Chapter 1. General Information

of UMTS networks and research publications suggest the use of SIP for virtual home
environments or distributed network games.

Known SER Limitations
The following items are not part of current distribution and are planned for next
releases:

• TCP transport

• Script processing of multiple branches on forking

Warning
ser ’s request processing language allows to make request deci-
sions based on current URI. When a request if forked to multi-
ple destinations, only the first branch’s URI is used as input for
script processing. This might lead to unexpected results. When-
ever a URI resolves to multiple different next-hop URIs, only the
first is processed which may result in handling not appropriate
for the other branch. For example, a URI might resolve to an IP
phone SIP address and PSTN gateway SIP address. If the IP
phone address is the first, then script execution ignores the sec-
ond branch. If a script includes checking gateway address in re-
quest URI, the checks never match. That might result in ignoring
of gateway admission control rules or applying them unnecessarily
to non-gateway destinations.

List of known bugs is publicly available at
http://developer.berlios.de/bugs/?group_id=480 3.

Licensing
ser is freely available under terms and conditions of the GNU General Public Li-
cense.

IMPORTANT NOTES

1) The GPL applies to this copy of SIP Express Router software (ser).
For a license to use the ser software under conditions
other than those described here, or to purchase support for this
software, please contact iptel.org by e-mail at the following addresses:

info@iptel.org

(see http://www.gnu.org/copyleft/gpl-faq.html#TOCHeardOtherLicense
for an explanation how parallel licenses comply with GPL)

2) ser software allows programmers to plug-in external modules to the
core part. Note that GPL mandates all plug-ins developed for the
ser software released under GPL license to be GPL-ed as well.

(see http://www.gnu.org/copyleft/gpl-faq.html#GPLAndPlugins
for a detailed explanation)

4

Chapter 1. General Information

3) Note that the GPL bellow is copyrighted by the Free Software Foundation,
but the ser software is copyrighted by FhG

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

5

Chapter 1. General Information

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest

6

Chapter 1. General Information

your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the

7

Chapter 1. General Information

original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

8

Chapter 1. General Information

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Obtaining Technical Assistance
We offer best-effort free support for ser . "best-effort" means that we try to solve your
problems via email as soon as we can, subject to available manpower. If you need
commercial support, contact info@iptel.org.

To receive feedback to your inquiries, we recommend you to subscribe to the serusers
mailing list and post your queries there. This mailing list is set up for mutual help by
the community of ser users and developers.

Mailing List Instructions

• Public archives and subscription form:
http://mail.iptel.org/mailman/listinfo/serusers 4

• To post, send an email to serusers@iptel.org

• If you think you encountered an error, please submit the following information to
avoid unnecessary round-trip times:

• Name and version of your operating system -- you can obtain it by calling un-
ame -a

• ser distribution: release number and package

• ser build -- you can obtain it by calling ser -V

• Your ser configuration file

• ser logs -- with default settings few logs are printed to syslog facility which typ-
ically dumps them to /var/log/messages . To enable detailed logs dumped to
stderr , apply the following configuration options: debug=8, log_stderror=yes,
fork=no.

• Captured SIP messages -- you can obtain them using tools such as ngrep or
ethereal .

If you are concerned about your privacy and do not wish your queries to be posted
and archived publicly, you may post to serhelp@iptel.org. E-mails to this address are

9

Chapter 1. General Information

only forwarded to iptel.org’s ser development team. However, as the team is quite
busy you should not be surprised to get replies with considerable delay.

More Information
Most up-to-date information including latest and most complete version of this doc-
umentation is always available at our website, http://www.iptel.org/ser/. For infor-
mation on how to install ser, read INSTALL. SGML documentation is available in the
’doc’ directory. A SIP tutorial (slide set) is available at http://www.iptel.org/sip/ .

Notes
1. http://www.iptel.org/

2. http://www.iptel.org/user/

3. http://developer.berlios.de/bugs/?group_id=480

4. http://mail.iptel.org/mailman/listinfo/serusers

5. http://www.iptel.org/ser/

6. http://www.iptel.org/sip/

10

Chapter 2. Introduction to SER

Request Routing and SER Scripts
The most important concept of every SIP server is that of request routing. The request
routing logic determines the next hop of a request. It can be for example used to
implement user location service or enforce static routing to a gateway. Real-world
deployments actually ask for quite complex routing logic, which needs to reflex static
routes to PSTN gateways, dynamic routes to registered users, authentication policy,
capabilities of SIP devices, etc.

SER’s answer to this need for routing flexibility is a routing language, which allows
administrators to define the SIP request processing logic in a detailed manner. They
can for example easily split SIP traffic by method or destination, perform user loca-
tion, trigger authentication, verify access permissions, and so on.

The primary building block of the routing language are actions. There are built-in
actions (like forward for stateless forwarding or strip for stripping URIs) as
well as external actions imported from shared library modules. All actions can
be combined in compound actions by enclosing them in braces, e.g. {a1(); a2();}.
Actions are aggregated in one or more route blocks. Initially, only the default routing
block denoted by route[0] is called. Other routing blocks can be called by the action
route(blocknumber), recursion is permitted. The language includes conditional
statements.

The routing script is executed for every received request in sequential order. Ac-
tions may return positive/negative/zero value. Positive values are considered suc-
cess and evaluated as TRUE in conditional expressions. Negative values are con-
sidered FALSE. Zero value means error and leaves execution of currently processed
route block. The route block is left too, if break is explicitly called from it.

The easiest and still very useful way for ser users to affect request routing logic is to
determine next hop statically. An example is routing to a PSTN gateway whose static
IP address is well known. To configure static routing, simply use the action forward(
IP_address, port_number). This action forwards an incoming request "as is" to the
destination described in action’s parameters.

Example 2-1. Static Forwarding

if requests URI is numerical and starts with
zero, forward statelessly to a static destination

if (uri=~"^sip:0[0-9]*@iptel.org) {
forward(192.168.99.3, 5080);

}

However, static forwarding is not sufficient in many cases. Users desire mobility and
change their location frequently. Lowering costs for termination of calls in PSTN re-
quires locating a least-cost gateway. Which next-hop is taken may depend on user’s
preferences. These and many other scenarios need the routing logic to be more dy-
namic. We describe in the Section called Conditional Statements how to make request
processing subject to various conditions and in the Section called Request URI Rewrit-
ing how to determine next SIP hop.

Conditional Statements
A very useful feature is the ability to make routing logic depend on a condition. A
script condition may for example distinguish between request processing for served
and foreign domains, IP and PSTN routes, it may split traffic by method or username,

11

Chapter 2. Introduction to SER

it may determine whether a request should be authenticated or not, etc. ser allows
administrators to form conditions based on properties of processed request, such as
method or uri, as well as on virtually any piece of data on the Internet.

Example 2-2. Conditional Statement

This example shows how a conditional statement is used to split incoming requests
between a PSTN gateway and a user location server based on request URI.
if request URI is numerical, forward the request to PSTN gateway...
if (uri=~"^sip:[0-9]+@foo.bar") { # match using a regular expression

forward(gateway.foo.bar, 5060);
} else { # ... forward the request to user location server otherwise

forward(userloc.foo.bar, 5060);
};

Conditional statements in ser scripts may depend on a variety of expressions. The
simplest expressions are action calls. They return true if they completed successfully
or false otherwise. An example of an action frequently used in conditional statements
is search imported from textops module. search action leverages textual nature of SIP
and compares SIP requests against a regular expression. The action returns true if the
expression matched, false otherwise.

Example 2-3. Use of search Action in Conditional Expression

prevent strangers from claiming to belong to our domain;
if sender claims to be in our domain in From header field,
better authenticate him
if (search("(f|From): .*@mydomain.com)) {

if (!(proxy_authorize("mydomain.com" /* realm */,"subscriber" /* ta-
ble name */))) {

proxy_challenge("mydomain.com /* ream */, "1" /* use qop */);
break;

}
}

As modules may be created, which export new functions, there is virtually no limita-
tion on what functionality ser conditions are based on. Implementers may introduce
new actions whose return status depends on request content or any external data as
well. Such actions can query SQL, web, local file systems or any other place which
can provide information wanted for request processing.

Furthermore, many request properties may be examined using existing built-in
operands and operators. Available left-hand-side operands and legal combination
with operators and right-hand-side operands are described in Table 2-1. Expressions
may be grouped together using logical operators: negation (!), AND (&&), OR (||
and precedence parentheses (()).

Operators and Operands
There is a set of predefined operators and operands in ser, which in addition to ac-
tions may be evaluated in conditional expressions.

Left hand-side operands, which ser understands are the following:

• method, which refers to request method such as REGISTER or INVITE
• uri, which refers to current request URI, such as "sip:john.doe@foo.bar"

12

Chapter 2. Introduction to SER

Note: Note that "uri" always refers to current value of URI, which is subject to change be
uri-rewriting actions.

• scr_ip, which refers to IP address from which a request came.

• dst_ip refers to server’s IP address at which a request was received

ser understands the following operators:

• == stands for equity

• =~ stands for regular expression matching

• logical operators: and, or, negation, parentheses (C-notation for the operators may
be used too)

Table 2-1. Valid Combinations of Operands and Operators in Expressions

left-hand-side
operand

valid operators valid right-hand
side operators

exam-
ples/comments

method == (exact match),
=~ (regular
expression
matching)

string
method=="INVITE"
||
method=="ACK" ||
method=="CANCEL"

uri == (exact match),
=~ (regular
expression
matching)

string
uri=="sip:foo@bar.com"
matches only if
exactly this uri is in
request URI

== (exact match) myself the expression
uri==myself is true
if the host part in
request URI equals
a server name or a
server alias (set
using the alias
option in
configuration file)

src_ip == (match) IP, IP/mask_length,
IP/mask, hostname,
myself

src_ip==192.168.0.0/16
matches requests
coming from a
private network

dst_ip by ser == (match) IP, IP/mask_length,
IP/mask, hostname,
myself

dst_ip==127.0.0.1
matches if a request
was received via
loopback interface

Example 2-4. More examples of use of ser operators and operands in conditional

13

Chapter 2. Introduction to SER

statements

using an action as condition input; in this
case, an actions ’search’ looks for Contacts
with private IP address in requests; the condition
is processed if such a contact header field is
found

if (search("^(Contact|m): .*@(192\.168\.|10\.|172\.16)")) {
....

this condition is true if request URI matches
the regular expression "@bat\.iptel\.org"

if (uri=~"@bat\.iptel\.org") {
...

and this condition is true if a request came
from an IP address (useful for example for
authentication by IP address if digest is not
supported) AND the request method is INVITE

if ((src_ip==192.68.77.110 and method=="INVITE")
...

URI Matching
URI matching expressions have a broad use in a SIP server and deserve more expla-
nation. Typical uses of URI matching include implementation of numbering plans,
domain matching, binding external applications to specific URIs, etc. This section
shows examples of typical applications of URI-matching.

Domain Matching

One of most important uses of URI matching is deciding whether a request is tar-
geted to a served or outside domain. Typically, different request processing applies.
Requests for outside domains are simply forwarded to them, whereas more com-
plex logic applies to requests for a served domain. The logic may include saving
user’s contacts when REGISTER requests are received, forwarding requests to cur-
rent user’s location or a PSTN gateways, interaction with external applications, etc.

The easiest way to decide whether a request belongs a served domain is using
the myself operand. The expression "uri==myself" returns true if domain name
in request URI matches name of the host at which ser is running. This may be
insufficient in cases when server name is not equal to domain name for which the
server is responsible. For example, the "uri==myself" condition does not match if a
server "sipserver.foo.bar" receives a request for "sip:john.doe@foo.bar". To match
other names in URI than server’s own, set up the alias configuration option. The
option may be used multiple times, each its use adds a new item to a list of aliases.
The myself condition returns then true also for any hostname on the list of aliases.

Example 2-5. Use of uri==myself Expression

ser powers a domain "foo.bar" and runs at host sipserver.foo.bar;
Names of served domains need to be stated in the aliases
option; myself would not match them otherwise and would only
match requests with "sipserver.foo.bar" in request-URI
alias="foo.bar"
alias="sales.foo.bar"
route[0] {

if (uri==myself) {
the request either has server name or some of the

14

Chapter 2. Introduction to SER

aliases in its URI
log(1,"request for served domain")
some domain-specific logic follows here

} else {
aha -- the server is not responsible for this
requests; that happens for example with the following URIs
- sip:a@marketing.foo.bar
- sip:a@otherdomain.bar
log(1,"request for outbound domain");
outbound forwarding
t_relay();

};
}

It is possible to recognize whether a request belongs to a domain using regular ex-
pressions too. Care needs to be paid to construction of regular expressions. URI syn-
tax is rich and an incorrect expression would result in incorrect call processing. The
following example shows how an expression for domain matching can be formed.

Example 2-6. Domain Matching Using Regular Expressions

In this example, server named "sip.foo.bar" with IP address 192.168.0.10 is responsi-
ble for the "foo.bar" domain. That means, requests with the following hostnames in
URI should be matched:

• foo.bar, which is the name of server domain

• sip.foo.bar, since it is server’s name and some devices put server’s name in request
URI

• 192.168.0.10, since it is server’s IP address and some devices put server’s IP ad-
dress in request URI

Note how this regular expression is constructed. In particular:

• User name is optional (it is for example never included in REGISTER requests)
and there are no restrictions on what characters it contains. That is what (.+@)?
mandates.

• Hostname must be followed by port number, parameters or headers -- that is what
the delimiters [:;\?] are good for. If none it these follows, the URI must be ended
($). Otherwise, longer hostnames such as 192.168.0.101 or foo.bar.otherdomain.com
would mistakenly match.

• Matches are case-insensitive. All hostnames "foo.bar", "FOO.BAR" and "FoO.bAr"
match.

if (uri=~"^sip:(.+@)?(192\.168\.0\.10|(sip\.)?foo\.bar)([:;\?].*)?$")
log(1, "yes, it is a request for our domain");
break;

};

15

Chapter 2. Introduction to SER

Numbering Plans

Other use of URI matching is implementation of dialing plans. A typical task when
designing a dialing plan for SIP networks is to distinguish between "pure-IP" and
PSTN destinations. IP users typically have either alphanumerical or numerical user-
names. The numerical usernames are convenient for PSTN callers who can only use
numeric keypads. Next-hop destination of IP users is looked up dynamically using
user location database. On the other hand, PSTN destinations are always indicated
by nummerical usernames. Requests to PSTN are statically forwarded to well-known
PSTN gateways.

Example 2-7. A simple Numbering Plan

This example shows a simple dialing plan which reserves dialing prefix "8" for IP
users, other numbers are used for PSTN destinations and all other non-nummerical
usernames are used for IP users.
is it a PSTN destination? (is username nummerical and does not begin with 8?)
if (uri=~"^sip:[0-79][0-9]*@") { # ... forward to gateways then;

check first to which PSTN destination the requests goes;
if it is US (prefix "1"), use the gateway 192.168.0.1...
if (uri=~"^sip:1") {

strip the leading "1"
strip(1);
forward(192.168.0.1, 5060);

} else {
... use the gateway 10.0.0.1 for all other destinations
forward(10.0.0.1, 5060);

}
break;

} else {
it is an IP destination -- try to lookup it up in user location DB
if (!lookup("location")) {

bad luck ... user off-line
sl_send_reply("404", "Not Found");
break;

}
user on-line...forward to his current destination
forward(uri:host,uri:port);

}

Request URI Rewriting
The ability to give users and services a unique name using URI is a powerful tool. It
allows users to advertise how to reach them, to state to whom they wish to commu-
nicate and what services they wish to use. Thus, the ability to change URIs is very
important and is used for implementation of many services. "Unconditional forward-
ing" from user "boss" to user "secretary" is a typical example of application relying on
change of URI address.

ser has the ability to change request URI in many ways. A script can use any of the
following built-in actions to change request URI or a part of it: rewriteuri, rewrite-
host, rewritehostport, rewriteuser, rewriteuserpass and rewriteport. When later in
the script a forwarding action is encountered, the action forwards the request to ad-
dress in the rewritten URI.

16

Chapter 2. Introduction to SER

Example 2-8. Rewriting URIs

if (uri=~"dan@foo.bar") {
rewriteuri("sip:bla@somewherelse.com")
forward statelessly to the destination in current URI, i.e.,
to sip:bla@somewherelese.com:5060
forward(uri:host, uri:port);

}

Two more built-in URI-rewriting commands are of special importance for implemen-
tation of dialing plans and manipulation of dialing prefixes. prefix(s) , inserts a string
"s" in front of SIP address and strip(n) takes away the first "n" characters of a SIP ad-
dress. See Table 2-2 for examples of use of built-in URI-rewriting actions.

Commands exported by external modules can change URI too and many do so. The
most important application is changing URI using the user location database. The
command lookup(table) looks up current user’s location and rewrites user’s address
with it. If there is no registered contact, the command returns a negative value.

Example 2-9. Rewriting URIs Using User Location Database

store user location if a REGISTER appears
if (method=="REGISTER") {

save("mydomain1");
} else {
try to use the previously registered contacts to
determine next hop

if(lookup("mydomain1")) {
if found, forward there...
t_relay();

} else {
... if no contact on-line, tell it upstream
sl_send_reply("404", "Not Found");

};
};

External applications can be used to rewrite URI too. The "exec" module provides
script actions, which start external programs and read new URI value from their out-
put. exec_uri and exec_user both call an external program, pass current URI or its
user part to it respectively, wait until it completes, and eventually rewrite current
URI with its output.

It is important to realize that ser operates over current URI all the time. If an original
URI is rewritten by a new one, the original will will be forgotten and the new one
will be used in any further processing. In particular, the uri matching operand and
the user location action lookup always take current URI as input, regardless what
the original URI was.

Table 2-2 shows how URI-rewriting actions affect an example URI,
sip:12345@foo.bar:6060.

Table 2-2. URI-rewriting Using Built-In Actions

Example Action Resulting URI

rewritehost("192.168.0.10") rewrites the
hostname in URI, other parts (including
port number) remain unaffected.

sip:12345@192.168.10:6060

17

Chapter 2. Introduction to SER

Example Action Resulting URI

rewriteuri("sip:alice@foo.bar"); rewrites
the whole URI completely.

sip:alice@foo.bar

rewritehost-
port("192.168.0.10:3040")rewrites both
hostname and port number in URI.

sip:12345@192.168.0.10:3040

rewriteuser("alice") rewrites user part of
URI.

sip:alice@foo.bar:6060

rewriteuserpass("alice:pw") replaces the
pair user:password in URI with a new
value.

sip:alice:pw@foo.bar:6060

rewriteport("1234") replaces port
number in URI

sip:12345@foo.bar:1234

prefix("9") inserts a string ahead of user
part of URI

sip:912345@foo.bar:6060

strip(2) removes leading characters from
user part of URI

sip:345@foo.bar:6060

You can verify whether you understood URI processing by looking at the following
example. It rewrites URI several times. The question is what is the final URI to which
the script fill forward any incoming request.

Example 2-10. URI-rewriting Quiz

exec_uri("echo sip:2234@foo.bar; echo > /dev/null");
strip(2);
if (uri=~"^sip:2") {

prefix("0");
} else {

prefix("1");
};
forward(uri:host, uri:port);

The correct answer is the resulting URI will be "sip:134@foo.bar". exec_uri rewrites
original URI to "sip:2234@foo.bar", strip(2) takes two leading characters from user-
name away resulting in "34@iptel.org", the condition does not match because URI
does not begin with "2" any more, so the prefix "1" is inserted.

Destination Set
Whereas needs of many scenarios can by accommodated by maintaining a single re-
quest URI, some scenarios are better served by multiple URIs. Consider for example
a user with address john.doe@iptel.org. The user wishes to be reachable at his home
phone, office phone, cell phone, softphone, etc. However, he still wishes to maintain
a single public address on his business card.

To enable such scenarios, ser allows translation of a single request URI into multiple
outgoing URIs. The ability to forward a request to multiple destinations is known as
forking in SIP language. All outogoing URIs (in trivial case one of them) are called des-
tination set. The destination set always includes one default URI, to which additional
URIs can be appended. Maximum size of a destination set is limited by a compile-
time constant, MAX_BRANCHES, in config.h .

18

Chapter 2. Introduction to SER

Some actions are designed for use with a single URI whereas other actions work with
the whole destination set.

Actions which are currently available for creating the destination set are lookup from
usrloc module and exec_uri/exec_user from exec module. lookup fills in the destina-
tion set with user contact’s registered previously with REGISTER requests. The exec
actions fill in the destination set with output of an external program. In both cases,
current destination set is completely rewritten. New URIs can be appended to desti-
nation set by a call to the built-in action append_branch(uri).

Currently supported features which utilize destination sets are forking and redirection.
Action t_relay (TM module) for stateful forwarding supports forking. If called with
a non-trivial destination set, t_relay forks incoming request to all URIs in current
destination set. See Example 2-9. If a user previously registered from three locations,
the destination set is filled with all of them by lookup and the t_relay command
forwards the incoming request to all these destinations. Eventually, all user’s phone
will be ringing in parallel.

SIP redirection is another feature which leverages destination sets. It is a very light-
weighted method to establish communication between two parties with minimum
burden put on the server. In ser , the action sl_send_reply (SL module) is used for
this purpose. This action allows to generate replies to SIP requests without keeping
any state. If the status code passed to the action is 3xx, the current destination set is
printed in reply’s Contact header fields. Such a reply instructs the originating client
to retry at these addresses. (See Example 2-16).

Most other ser actions ignore destination sets: they either do not relate to URI pro-
cessing (log, for example) or they work only with the default URI. All URI-rewriting
functions such as rewriteuri belong in this category. URI-comparison operands only
refers to the first URI (see the Section called Operators and Operands). Also, the built-in
action for stateless forwarding, forward works only with the default URI and ignores
rest of the destination set. The reason is a proxy server willing to fork must guarantee
that the burden of processing multiple replies is not put unexpectedly on upstream
client. This is only achievable with stateful processing. Forking cannot be used along
with stateless forward, which thus only processes one URI out of the whole desti-
nation set. Also, the uri comparison operand (see the Section called Operators and
Operands) refers only to current URI and ignores the rest of destination set.

External Modules
ser provides the ability to link the server with external third-party shared libraries.
Lot of functionality which is included in the ser distribution is actually located in
modules to keep the server "core" compact and clean. Among others, there are mod-
ules for checking max_forwards value in SIP requests (maxfwd), transactional pro-
cessing (tm), record routing (rr), accounting (acc), authentication (auth), SMS gate-
way (sms), replying requests (sl), user location (usrloc, registrar) and more.

In order to utilize new actions exported by a module, ser must first load it. To load
a module, the directive loadmodule "filename" must be included in beginning of a
ser script file.

Example 2-11. Using Modules

This example shows how a script instructs ser to load a module and use actions
exported by it. Particularly, the sl module exports an action sl_send_reply which
makes ser act as a stateless user agent and reply all incoming requests with 404.
first of all, load the module!
loadmodule "/usr/lib/ser/modules/sl.so
route{

reply all requests with 404
sl_send_reply("404", "I am so sorry -- user not found");

19

Chapter 2. Introduction to SER

}

Note: Note that unlike with core commands, all actions exported by modules must have
parameters enclosed in quotation marks in current version of ser . In the following exam-
ple, the built-in action forward for stateless forwarding takes IP address and port numbers
as parameters without quotation marks whereas a module action t_relay for stateful for-
warding takes parameters enclosed in quotation marks.

Example 2-12. Parameters in built-in and exported actions

built-in action doesn’t enclose IP addresses and port numbers
in quotation marks
forward(192.168.99.100, 5060);
module-exported functions enclose all parameters in quotation
marks
t_relay_to("192.168.99.100", "5060");

Many modules also allow users to change the way how they work using prede-
fined parameters. For example, the authentication module needs to know location
of MySQL database which contains users’ security credentials. How module param-
eters are set using the modparam directive is shown in Example 2-13. modparam
always contains identification of module, parameter name and parameter value. De-
scription of parameters available in modules is available in module documentation.

Yet another thing to notice in this example is module dependency. Modules may
depend on each other. For example, the authentication modules leverages the mysql
module for accessing mysql databases and sl module for generating authentication
challenges. We recommend that modules are loaded in dependency order to avoid
ambiguous server behaviour.

Example 2-13. Module Parameters

------------------ module loading ---------------------------------
-

load first modules on which ’auth’ module depends;
sl is used for sending challenges, mysql for storage
of user credentials
loadmodule "modules/sl/sl.so"
loadmodule "modules/mysql/mysql.so"
loadmodule "modules/auth/auth.so"

------------------ module parameters ------------------------------
-
tell the auth module the access data for SQL database:
username, password, hostname and database name
modparam("auth", "db_url","sql://ser:secret@dbhost/ser")

------------------------- request routing logic ------------------
-

authenticate all requests prior to forwarding them

route{

if (!proxy_authorize("foo.bar" /* realm */,
"subscriber" /* table name */)) {

20

Chapter 2. Introduction to SER

proxy_challenge("foo.bar", "0");
break;

};
forward(192.168.0.10,5060);

}

Writing Scripts
This section demonstrates simple examples how to configure server’s behaviour us-
ing the ser request routing language. All scripts follow the ser language syntax,
which dictates the following block ordering:

• global configuration parameters -- these value affect behaviour of the server such as
port number at which it listens, number of spawned children processes, and log-
level. See the Section called Core Options in Chapter 5 for a list of available options.

• module loading -- these statements link external modules, such as transaction man-
agement (tm) or stateless UA server (sl) dynamically. See the Section called Modules
in Chapter 5 for a list of modules included in ser distribution.

Note: If modules depend on each other, than the depending modules must be loaded
after modules on which they depend. We recommend to load first modules tm and sl
because many other modules (authentication, user location, accounting, etc.) depend
on these.

• module-specific parameters -- determine how modules behave; for example, it is pos-
sible to configure database to be used by authentication module.

• one or more route blocks containing the request processing logic, which includes
built-in actions as well as actions exported by modules. See the Section called Core
Commands in Chapter 5 for a list of built-in actions.

• optionally, if modules supporting reply processing (currently only TM) are loaded,
one or more reply_route blocks containing logic triggered by received replies. Re-
strictions on use of actions within reply_route blocks apply -- see the Section called
Core Commands in Chapter 5 for more information.

For more complex examples, see the etc directory in ser source distribution. It con-
tains the iptel.cfg script which is in production use at iptel.org’s public SIP site
and exploits most of ser features.

Default Configuration Script
The configuration script, ser.cfg , is a part of every ser distribution and defines de-
fault behaviour. It allows users to register with the server and have requests proxied
to each other.

After performing routine checks, the script looks whether incoming request is for
served domain. If so and the request is "REGISTER", ser acts as SIP registrar and
updates database of user’s contacts. Optionally, it verifies user’s identity first to avoid
unauthorized contact manipulation.

21

Chapter 2. Introduction to SER

Non-REGISTER request for served domains are then processed using user location
database. If a contact is found for requested URI, script execution proceeds to stateful
forwarding, a negative 404 reply is generated otherwise. Requests outside served
domain are always statefully forwarded.

Note that this simple script features several limitations:

• By default, authentication is turned off to avoid dependency on mysql. Unless it it
turned on, anyone can register using any name and "steal" someone else’s calls.

• Even it authentication is turned on, there is no relationship between authentication
username and address of record. That means that for example a user authenticat-
ing himself correctly with "john.doe" id may register contacts for "gw.bush". Site
policy may wish to mandate authentication id to be equal to username claimed in
To header field. check_to action from auth module can be used to enforce such a
policy.

• There is no dialing plan implemented. All users are supposed to be reachable via
user location database. See the Section called Numbering Plans for more informa-
tion.

• The script assumes users will be using server’s name as a part of their address of
record. If users wish to use another name (domain name for example), this must
be set using the alias options. See the Section called Domain Matching for more
information.

• If authentication is turned on by uncommenting related configuration options,
clear-text user passwords will by assumed in back-end database.

Example 2-14. Default Configuration Script

#
$Id: ser.cfg,v 1.12 2002/10/21 02:40:06 jiri Exp $
#
simple quick-start config script
#

----------- global configuration parameters -----------------------
-

debug=3 # debug level (cmd line: -dddddddddd)
fork=no
log_stderror=yes# (cmd line: -E)
check_via=no # (cmd. line: -v)
dns=no # (cmd. line: -r)
rev_dns=no # (cmd. line: -R)
port=5060
children=4
fifo="/tmp/ser_fifo"

listen=192.168.0.16

------------------ module loading ---------------------------------
-

Uncomment this if you want to use SQL database
#loadmodule "/usr/lib/ser/modules/mysql.so"

loadmodule "modules/sl/sl.so"
loadmodule "modules/tm/tm.so"
loadmodule "modules/rr/rr.so"
loadmodule "modules/maxfwd/maxfwd.so"
loadmodule "modules/usrloc/usrloc.so"
loadmodule "modules/registrar/registrar.so"

22

Chapter 2. Introduction to SER

Uncomment this if you want digest authentication
mysql.so must be loaded !
#loadmodule "/usr/lib/ser/modules/auth.so"

----------------- setting module-specific parameters --------------
-

-- usrloc params --

modparam("usrloc", "db_mode", 0)

Uncomment this if you want to use SQL database
for persistent storage and comment the previous line
#modparam("usrloc", "db_mode", 2)

-- auth params --
Uncomment if you are using auth module
#
#modparam("auth", "secret", "alsdkhglaksdhfkloiwr")
#modparam("auth", "calculate_ha1", yes)
#
If you set "calculate_ha1" parameter to yes (which true in this con-
fig),
uncomment also the following parameter)
#
#modparam("auth", "password_column", "password")

------------------------- request routing logic ------------------
-

main routing logic

route{

initial sanity checks -- messages with
max_forwars==0, or excessively long requests
if (!mf_process_maxfwd_header("10")) {

sl_send_reply("483","Too Many Hops");
break;

};
if (len_gt(max_len)) {

sl_send_reply("513", "Message too big");
break;

};

Do strict routing if pre-loaded route headers present
rewriteFromRoute();

if the request is for other domain use UsrLoc
(in case, it does not work, use the following command
with proper names and addresses in it)
if (uri==myself) {

if (method=="REGISTER") {

Uncomment this if you want to use digest authentication
if (!www_authorize("iptel.org", "subscriber")) {
www_challenge("iptel.org", "0");
break;
};

save("location");
break;

};

23

Chapter 2. Introduction to SER

native SIP destinations are handled using our USRLOC DB
if (!lookup("location")) {

sl_send_reply("404", "Not Found");
break;

};
};
forward to current uri now
if (!t_relay()) {

sl_reply_error();
};

}

Stateful User Agent
This examples shows how to make ser act as a stateful user agent (UA). Ability to act
as as a stateful UA is essential to many applications which terminate a SIP path. These
applications wish to focus on their added value. They do not wish to be involved
in all SIP gory details, such as request and reply retransmission, reply formatting,
etc. For example, we use the UA functionality to shield SMS gateway and instant
message store from SIP transactional processing. The simple example bellow issues
a log report on receipt of a new transaction. If we did not use a stateful UA, every
single request retransmission would cause the application to be re-executed which
would result in duplicated SMS messages, instant message in message store or log
reports.

The most important actions are t_newtran and t_reply. t_newtran shields sub-
sequent code from retransmissions. It returns success and continues when a new
request arrived. It exits current route block immediately on receipt of a retransmis-
sions. It only returns a negative value when a serious error, such as lack of memory,
occurs.

t_reply generates a reply for a request. It generates the reply statefully, i.e., it is kept
for future retransmissions in memory.

Example 2-15. Stateful UA

#
$Id: uas.cfg,v 1.5 2002/10/04 21:37:11 jiri Exp $
#
this example shows usage of ser as user agent
server which does some functionality (in this
example, ’log’ is used to print a notification
on a new transaction) and behaves statefuly
(e.g., it retransmits replies on request
retransmissions)

------------------ module loading ---------------------------------
-

loadmodule "modules/sl/sl.so"
loadmodule "modules/tm/tm.so"

------------------------- request routing logic ------------------
-

main routing logic

24

Chapter 2. Introduction to SER

route{
for testing purposes, simply okay all REGISTERs
if (method=="REGISTER") {

log("REGISTER");
sl_send_reply("200", "ok");
break;

};

create transaction state; abort if error occured
if (!t_newtran()) {

sl_reply_error();
break;

};

the following log will be only printed on receipt of
a new message; retranmissions are absorbed by t_newtran
log(1, "New Transaction Arrived\n");

do what you want to do as a sever...
if (uri=~"a@") {

if (!t_reply("409", "Bizzar Error")) {
sl_reply_error();

};
} else {

if (!t_reply("699", "I don’t want to chat with you")) {
sl_reply_error();

};
};

}

Redirect Server
The redirect example shows how to redirect a request to multiple destination using
3xx reply. Redirecting requests as opposed to proxying them is essential to various
scalability scenarios. Once a message is redirected, ser discards all related state and
is no more involved in subsequent SIP transactions (unless the redirection addresses
point to the same server again).

The key ser actions in this example are append_branch and sl_send_reply (sl mod-
ule).

append_branch adds a new item to the destination set. The destinations set
always includes the current URI and may be enhanced up to MAX_BRANCHESitems.
sl_send_reply command, if passed SIP reply code 3xx, takes all values in current
destination set and adds them to Contact header field in the reply being sent.

Example 2-16. Redirect Server

#
$Id: redirect.cfg,v 1.4 2002/10/04 21:37:11 jiri Exp $
#
this example shows use of ser as stateless redirect server
#

------------------ module loading ---------------------------------
-

loadmodule "modules/sl/sl.so"

25

Chapter 2. Introduction to SER

------------------------- request routing logic ------------------
-

main routing logic

route{
for testing purposes, simply okay all REGISTERs
if (method=="REGISTER") {

log("REGISTER");
sl_send_reply("200", "ok");
break;

};
rewrite current URI, which is always part of destination ser
rewriteuri("sip:parallel@iptel.org:9");
append one more URI to the destination ser
append_branch("sip:redirect@iptel.org:9");
redirect now
sl_send_reply("300", "Redirect");

}

Executing External Script
Like in the previous example, we show how to make ser act as a redirect server. The
difference is that we do not use redirection addresses hardwired in ser script but
get them from external shell commands. We also use ser’s ability to execute shell
commands to log source IP address of incoming SIP requests.

The new commands introduced in this example are exec_msg and exec_uri.
exec_msg takes current requests, starts an external command, and passes the
requests to the command’s standard input. It also passes request’s source IP address
in environment variable named SRC_IP.

exec_uri serves for URI rewriting by external applications. The exec_uri action passes
current URI to the called external program as command-line parameter, and rewrites
current destination set with the program’s output. An example use would be an
implementation of a Least-Cost-Router, software which returns URI of the cheapest
PSTN provider for a given destination based on some pricing tables. Example 2-17 is
much easier: it prints fixed URIs on its output using shell script echo command.

Example 2-17. Executing External Script

#
$Id: exec.cfg,v 1.4 2002/10/04 21:37:11 jiri Exp $
#
this example shows use of ser as stateless redirect server
which rewrites URIs using an exernal utility
#

------------------ module loading ---------------------------------
-

loadmodule "modules/exec/exec.so"
loadmodule "modules/sl/sl.so"

------------------------- request routing logic ------------------
-

main routing logic

26

Chapter 2. Introduction to SER

route{
for testing purposes, simply okay all REGISTERs
if (method=="REGISTER") {

log("REGISTER");
sl_send_reply("200", "ok");
break;

};

first dump the message to a file using cat command
exec_msg("printenv SRCIP > /tmp/exectest.txt; cat >> /tmp/exectest.txt");
and then rewrite URI using external utility
note that the last echo command trashes input parameter
if (exec_uri("echo sip:mra@iptel.org;echo sip:mrb@iptel.org;echo>/dev/null")) {

sl_send_reply("300", "Redirect");
} else {

sl_reply_error();
log(1, "alas, rewriting failed\n");

};
}

Reply Processing (Forward on Unavailable)
Many services depend on status of messages relayed downstream: forward on busy
and forward on no reply to name the most well-known ones. To support implemen-
tation of such services, ser allows to return to request processing when request for-
warding failed. When a request is reprocessed, new request branches may be initiated
or the transaction can be completed at discretion of script writer.

The primitives used are t_on_negative(r) and reply_route[r]{}. If t_on_negative is
called before a request is statefuly forwarded and a forwarding failure occurs, ser
will return to request processing in a reply_route block. Failures include receipt of a
SIP error (status code >= 300) from upstream or not receiving any final reply within
final response period.

In Example 2-18, reply_route[1] is set to be entered on error using the
t_on_negative(1) action. Within this reply block, ser is instructed to initiate a new
branch and try to reach called party at another destination (sip:nonsense@iptel.org).
To deal with the case when neither the alternate destination succeeds,
t_on_negative is set again. If the case really occurs, reply_route[2] is entered and a
last resort destination (sip:foo@iptel.org) is tried.

Example 2-18. Reply Processing

#
$Id: onr.cfg,v 1.5 2002/10/04 21:37:11 jiri Exp $
#
example script showing both types of forking;
incoming message is forked in parallel to
’nobody’ and ’parallel’, if no positive reply
appears with final_response timer, nonsense
is retried (serial forking); than, destination
’foo’ is given last chance

------------------ module loading ---------------------------------
-

loadmodule "modules/sl/sl.so"
loadmodule "modules/tm/tm.so"

27

Chapter 2. Introduction to SER

----------------- setting module-specific parameters --------------
-

-- tm params --
set time for which ser will be waiting for a final response;
fr_inv_timer sets value for INVITE transactions, fr_timer
for all others
modparam("tm", "fr_inv_timer", 15)
modparam("tm", "fr_timer", 10)

------------------------- request routing logic ------------------
-

main routing logic

route{
for testing purposes, simply okay all REGISTERs
if (method=="REGISTER") {

log("REGISTER");
sl_send_reply("200", "ok");
break;

};
try these two destinations first in parallel; the second
destination is targeted to sink port -- that will make ser
wait until timer hits
seturi("sip:nobody@iptel.org");
append_branch("sip:parallel@iptel.org:9");
if we do not get a positive reply, continue at reply_route[1]
t_on_negative("1");
forward the request to all destinations in destination set now
t_relay();

}

reply_route[1] {
forwarding failed -- try again at another destination
append_branch("sip:nonsense@iptel.org");
log(1,"first redirection\n");
if this alternative destination fails too, proceed to reply_route[2]
t_on_negative("2");

}

reply_route[2] {
try out the last resort destination
append_branch("sip:foo@iptel.org");
log(1, "second redirection\n");
we no more call t_on_negative here; if this destination
fails too, transaction will complete

}

28

Chapter 3. Server Operation

Recommended Operational Practices
Operation of a SIP server is not always easy task. Server administrators are chal-
lenged by broken or misconfigured user agents, network and host failures, hostile at-
tacks and other stress-makers. All such situations may lead to an operational failure.
It is sometimes very difficult to figure out the root reason of a failure, particularly
in a distributed environment with many SIP components involved. In this section,
we share some of our practices and refer to tools which have proven to make life of
administrators easier

1. Keeping track of messages is good

Frequently, operational errors are discovered or reported with a delay. Users
frustrated by an error frequently approach administrators and scream "even though
my SIP requests were absolutely ok yesterday, they were mistakenly denied by your
server". If administrators do not record all SIP traffic at their site, they will be no
more able to identify the problem reason. We thus recommend that site operators
record all messages passing their site and keep them stored for some period of
time. They may use utilities such as ngrep or tcpdump . There is also a utility

scripts/harv_ser.sh in ser distribution for post-processing of captures
messages. It summarizes messages captured by reply status and user-agent header
field.

2. Real-time Traffic Watching

Looking at SIP messages in real-time may help to gain understanding of problems.
Though there are commercial tools available, using a simple, text-oriented tool such
as ngrep makes the job very well thanks to SIP’s textual nature.

Example 3-1. Using ngrep

In this example, all messages at port 5060 which include the string "bkraegelin" are
captured and displayed
[jiri@fox s]$ ngrep bkraegelin@ port 5060
interface: eth0 (195.37.77.96/255.255.255.240)
filter: ip and (port 5060)
match: bkraegelin@
#
U +0.000000 153.96.14.162:50240 -> 195.37.77.101:5060
REGISTER sip:iptel.org SIP/2.0.
Via: SIP/2.0/UDP 153.96.14.162:5060.
From: sip:bkraegelin@iptel.org.
To: sip:bkraegelin@iptel.org.
Call-ID: 0009b7aa-1249b554-6407d246-72d2450a@153.96.14.162.
Date: Thu, 26 Sep 2002 22:03:55 GMT.
CSeq: 101 REGISTER.
Expires: 10.
Content-Length: 0.
.

#
U +0.000406 195.37.77.101:5060 -> 153.96.14.162:5060
SIP/2.0 401 Unauthorized.
Via: SIP/2.0/UDP 153.96.14.162:5060.
From: sip:bkraegelin@iptel.org.
To: sip:bkraegelin@iptel.org.
Call-ID: 0009b7aa-1249b554-6407d246-72d2450a@153.96.14.162.
CSeq: 101 REGISTER.
WWW-Authenticate: Digest realm="iptel.org", nonce="3d9385170000000043acbf6ba9c9741790e0c57adee73812", algorithm=MD5.
Server: Sip EXpress router(0.8.8 (i386/linux)).

29

Chapter 3. Server Operation

Content-Length: 0.
Warning: 392 127.0.0.1:5060 "Noisy feedback tells: pid=31604 req_src_ip=153.96.14.162 in_uri=sip:iptel.org out_uri=sip:iptel.org via_cnt==1".

3. Tracing Errors in Server Chains

A request may pass any number of proxy servers on its path to its destination. If an
error occurs, it may be quite difficult to learn in which of the servers in the chain it
originated and what was its cause. ser does its best and displays extensive diagnos-
tics information in SIP replies. This information is part of the warning header field,
and contains the following facts:

• Server’s IP Address -- good to identify from which server in a chain the reply came

• Incoming and outgoing URIs -- good to learn for which URI the reply was gener-
ated, as it may be rewritten many times in the path

• Number of Via header fields in replied request -- that helps in assessment of re-
quest path length.

A nice utility for debugging server chains is sipsak , Swiss Army Knife, traceroute-
like tool for SIP developed at iptel.org. It allows you to send OPTIONS request with
low, increasing Max-Forwards header-fields and follow how it propagates in SIP net-
work. See its webpage at http://sipsak.berlios.de/ 1.

Example 3-2. Use of SIPSak for Learning SIP Path

[jiri@bat sipsak]$./sipsak -T -s sip:7271@iptel.org
warning: IP extract from warning activated to be more informational
0: 127.0.0.1 (0.456 ms) SIP/2.0 483 Too Many Hops
1: ?? (31.657 ms) SIP/2.0 200 OK

without Contact header

Note that in this example, the second hop server does not issue any warning header
fields in replies and it is thus impossible to display its IP address in SIPsak ’s output.

4. Watching Server Health

Watching Server’s operation status in real-time may also be a great aid for trouble-
shooting. ser has an excellent facility, a FIFO server, which allows UNIX tools to
access server’s internals. (It is similar to how Linux tool access Linux kernel via the
proc file system.) The FIFO server accepts commands via a FIFO (named pipe) and
returns data asked for. Administrators do not need to learn details of the FIFO com-
munication and can serve themselves using a front-end utility serctl . Of particular
interest for monitoring server’s operation are serctl commands ps and moni. The
former displays running ser processes, whereas the latter shows statistics.

Example 3-3. serctl ps command

This example shows 10 processes running at a host. The process 0, "attendant"
watches child processes and terminates all of them if a failure occurs in any of them.
Processes 1-4 listen at local interface and processes 5-8 listen at Ethernet interface at
port number 5060. Process number 9 runs FIFO server, and process number 10
processes all server timeouts.
[jiri@fox jiri]$ serctl ps

30

Chapter 3. Server Operation

0 31590 attendant
1 31592 receiver child=0 sock=0 @ 127.0.0.1::5060
2 31595 receiver child=1 sock=0 @ 127.0.0.1::5060
3 31596 receiver child=2 sock=0 @ 127.0.0.1::5060
4 31597 receiver child=3 sock=0 @ 127.0.0.1::5060
5 31604 receiver child=0 sock=1 @ 195.37.77.101::5060
6 31605 receiver child=1 sock=1 @ 195.37.77.101::5060
7 31606 receiver child=2 sock=1 @ 195.37.77.101::5060
8 31610 receiver child=3 sock=1 @ 195.37.77.101::5060
9 31611 fifo server
10 31627 timer

5. Is Server Alive

It is essential for solid operation to know continuously that server is alive. We’ve
been using two tools for this purpose. sipsak does a great job of "pinging" a server,
which may be used for alerting on unresponsive servers.

monit is a server watching utility which alerts when a server dies.

6. Setting Proper Log Level

If something is going wrong and you are in doubts what causes the error, increase
log level. Additional log messages may help you to trace the error reason. Be careful
though: ser is very talkative in higher debugging levels. Too noisy log files are
difficult to read too and server’s operation slows down noticeably.

7. Dealing with DNS

SIP standard leverages DNS. Administrators of ser should be aware of impact of
DNS on server’s operation. Server’s attempt to resolve an unresolvable address may
block a server process in terms of seconds. To be safer that the server doesn’t stop
responding due to being blocked by DNS resolving, we recommend the following
practices:

• Start a sufficient number of children processes. If one is blocked, the other children
will keep serving.

• Use DNS caching. For example, in Linux, there is an nscd daemon available for
this purpose.

• Process transactions statefully if memory allows. That helps to absorb retransmis-
sions without having to resolve DNS for each of them.

8. Labeling Outbound Requests

Without knowing, which pieces of script code a relayed request visited, trouble-
shooting would be difficult. Scripts typically apply different processing to different
routes such as to IP phones and PSTN gateways. We thus recommend to label outgo-
ing requests with a label describing the type of processing applied to the request.

Attaching "routing-history" hints to relayed requests is as easy as using the
append_hf action exported by textops module. The following example shows how
different labels are attached to requests to which different routing logic was applied.

31

Chapter 3. Server Operation

Example 3-4. "Routing-history" labels

is the request for our domain?
if so, process it using UsrLoc and label it so.
if (uri=~[@:\.]domain.foo") {

if (!lookup("location")) {
sl_send_reply("404", "Not Found");
break;

};
user found -- forward to him and label the request
append_hf("P-hint: USRLOC\r\n");

} else {
it is an outbound request to some other domain --
indicate it in the routing-history label

append_hf("P-hint: OUTBOUND\r\n");
};
t_relay();

This is how such a labeled requests looks like. The last header field includes a label
indicating the script processed the request as outbound.
#
U 2002/09/26 02:03:09.807288 195.37.77.101:5060 -> 203.122.14.122:5060
SUBSCRIBE sip:rajesh@203.122.14.122 SIP/2.0.
Max-Forwards: 10.
Via: SIP/2.0/UDP 195.37.77.101;branch=53.b44e9693.0.
Via: SIP/2.0/UDP 203.122.14.115:16819.
From: sip:rajeshacl@iptel.org;tag=5c7cecb3-cfa2-491d-a0eb-72195d4054c4.
To: sip:rajesh@203.122.14.122.
Call-ID: bd6c45b7-2777-4e7a-b1ae-11c9ac2c6a58@203.122.14.115.
CSeq: 2 SUBSCRIBE.
Contact: sip:203.122.14.115:16819.
User-Agent: Windows RTC/1.0.
Proxy-Authorization: Digest username="rajeshacl", realm="iptel.org", al-
gorithm="MD5", uri="sip:rajesh@203.122.14.122", nonce="3d924fe900000000fd6227db9e565b73c465225d94b2a938", response="a855233f61d409a791f077cbe184d3e3".
Expires: 1800.
Content-Length: 0.
P-hint: OUTBOUND.

HOWTOs
This section is a "cookbook" for dealing with common tasks, such as user manage-
ment or controlling access to PSTN gateways.

1. User Management

There are two tasks related to management of SIP users: maintaining user accounts
and maintaining user contacts. Both these jobs can be done using the serctl
command-line tool. Also, the complimentary web interface, serweb , can be used for
this purpose as well.

If user authentication is turned on, which is a highly advisable practice, user account
must be created before a user can log in. To create a new user account, call the serctl
add utility with username, password and email as parameters. It is important that
the environment SIP_DOMAIN is set to your realm and matches realm values used in
your script. The realm value is used for calculation of credentials stored in subscriber
database, which are bound permanently to this value.

[jiri@cat gen_ha1]$ export SIP_DOMAIN=foo.bar
[jiri@cat gen_ha1]$ serctl add newuser secret newuser@foo.bar

32

Chapter 3. Server Operation

MySql Password:
new user added

serctl can also change user’s password or remove existing accounts from system
permanently.

[jiri@cat gen_ha1]$ serctl passwd newuser newpassword
MySql Password:
password change succeeded
[jiri@cat gen_ha1]$ serctl rm newuser
MySql Password:
user removed

User contacts are typically automatically uploaded by SIP phones to server during
registration process and administrators do not need to worry about them. However,
users may wish to append permanent contacts to PSTN gateways or to locations in
other administrative domains. To manipulate the contacts in such cases, use serctl
ul tool. Note that this is the only correct way to update contacts -- direct changes to
back-end MySql database do not affect server’s memory. Also note, that if persistence
is turned off (usrloc "db_mode" parameter set to "0"), all contacts are gone on server
reboot. Make sure that persistence is enabled if you add permanent contacts.

To add a new permanent contact for a user, call serctl ul add <username >
<contact >. To delete all user’s contacts, call serctl ul rm <username >. serctl
ul show <username > prints all current user’s contacts.

[jiri@cat gen_ha1]$ serctl ul add newuser sip:666@gateway.foo.bar
sip:666@gateway.foo.bar
200 Added to table
(’newuser’,’sip:666@gateway.foo.bar’) to ’location’
[jiri@cat gen_ha1]$ serctl ul show newuser
<sip:666@gateway.foo.bar >;q=1.00;expires=1073741812
[jiri@cat gen_ha1]$ serctl ul rm newuser
200 user (location, newuser) deleted
[jiri@cat gen_ha1]$ serctl ul show newuser
404 Username newuser in table location not found

2. User Aliases

Frequently, it is desirable for a user to have multiple addresses in a domain. For
example, a user with username "john.doe" wants to be reachable at a shorter address
"john" or at a nummerical address "12335", so that PSTN callers with digits-only key-
pad can reach him too.

With ser , you can maintain a special user-location table and translate existing aliases
to canonical usernames using the lookup action from usrloc module. The following
script fragment demonstrates use of lookup for this purpose.

Example 3-5. Configuration of Use of Aliases

if (!uri==myself) { # request not for our domain...
route(1); # go somewhere else, where outbound requests are processed
break;

};
the request is for our domain -- process registrations first

33

Chapter 3. Server Operation

if (method=="REGISTER") { route(3); break; };

look now, if there is an alias in the "aliases" table; don’t care
about return value: whether there is some or not, move ahead then
lookup("aliases");

there may be aliases which translate to other domain and for which
local processing is not appropriate; check again, if after the
alias translation, the request is still for us
if (!uri==myself) { route(1); break; };

continue with processing for our domain...
...

The table with aliases is updated using the serctl tool. serctl alias add
<alias > <uri > adds a new alias, serctl alias show <user > prints an existing
alias, and serctl alias rm <user > removes it.

[jiri@cat sip_router]$ serctl alias add 1234 sip:john.doe@foo.bar
sip:john.doe@foo.bar
200 Added to table
(’1234’,’sip:john.doe@foo.bar’) to ’aliases’
[jiri@cat sip_router]$ serctl alias add john sip:john.doe@foo.bar
sip:john.doe@foo.bar
200 Added to table
(’john’,’sip:john.doe@foo.bar’) to ’aliases’
[jiri@cat sip_router]$ serctl alias show john
<sip:john.doe@foo.bar >;q=1.00;expires=1073741811
[jiri@cat sip_router]$ serctl alias rm john
200 user (aliases, john) deleted

Note that persitence needs to be turned on in usrloc module. All changes to aliases
will be otherwise lost on server reboot. To enable persistence, set the db_mode usrloc
parameter to a non-zero value.

....load module ...
loadmodule "modules/usrloc/usrloc.so"
... turn on persistence -- all changes to user tables are immediately
flushed to mysql
modparam("usrloc", "db_mode", 1)
the SQL address:
modparam("usrloc", "db_url","sql://ser:secret@dbhost/ser")

3. Access Control (PSTN Gateway)

It is sometimes important to exercise some sort of access control. A typical use case
is when ser is used to guard a PSTN gateway. If a gateway was not well guarded,
unauthorized users would be able to use it to terminate calls in PSTN, and cause high
charges to its operator.

There are few issues you need to understand when configuring ser for this purpose.
First, if a gateway is built or configured to accept calls from anywhere, callers may
easily bypass your access control server and communicate with the gateway directly.
You then need to enforce at transport layer that signaling is only accepted if coming

34

Chapter 3. Server Operation

via ser and deny SIP packets coming from other hosts and port numbers. Your net-
work must be configured not to allow forged IP addresses. Also, you need to turn
on record-routing to assure that all session requests will travel via ser . Otherwise,
caller’s devices would send subsequent SIP requests directly to your gateway, which
would fail because of transport filtering.

Authorization (i.e., the process of determining who may call where) is facilitated in
ser using group membership concept. Scripts make decisions on whether a caller is
authorized to make a call to a specific destination based on user’s membership in a
group. For example a policy may be set up to allow calls to international destinations
only to users, who are members of an "int" group. Before user’s group membership
is checked, his identity must be verified first. Without cryptographic verification of
user’s identity, it would be impossible to assert that a caller really is who he claims
to be.

The following script demonstrates, how to configure ser as an access control server
for a PSTN gateway. The script verifies user identity using digest authentication,
checks user’s privileges, and forces all requests to visit the server.

Example 3-6. Script for Gateway Access Control

#
$Id: iptel.cfg,v 1.38 2002/10/04 21:40:31 jiri Exp $
#
example: ser configured as PSTN gateway guard; PSTN gateway is located
at 192.168.0.10
#

------------------ module loading ---------------------------------
-

loadmodule "modules/sl/sl.so"
loadmodule "modules/tm/tm.so"
loadmodule "modules/acc/acc.so"
loadmodule "modules/rr/rr.so"
loadmodule "modules/maxfwd/maxfwd.so"
loadmodule "modules/mysql/mysql.so"
loadmodule "modules/auth/auth.so"

----------------- setting module-specific parameters --------------
-

modparam("auth", "db_url","sql://ser:heslo@localhost/ser")
modparam("auth", "calculate_ha1", yes)
modparam("auth", "password_column", "password")

-- acc params --
modparam("acc", "log_level", 1)
that is the flag for which we will account -- don’t forget to
set the same one :-)
modparam("acc", "acc_flag", 1)

------------------------- request routing logic ------------------
-

main routing logic

route{

/* ********* ROUTINE CHECKS ********************************** */

filter too old messages
if (!mf_process_maxfwd_header("10")) {

log("LOG: Too many hops\n");
sl_send_reply("483","Too Many Hops");

35

Chapter 3. Server Operation

break;
};
if (len_gt(max_len)) {

sl_send_reply("513", "Wow -- Message too large");
break;

};

/* ********* RR ********************************** */

/* Do strict routing if route headers present */
rewriteFromRoute();
/* record-route INVITEs -- all subsequent requests must visit us */
if (method=="INVITE") {

addRecordRoute();
};

now check if it really is a PSTN destination which should be handled
by our gateway; if not, and the request is an invitation, drop it -

-
we cannot terminate it in PSTN; relay non-INVITE requests -- it may
be for example BYEs sent by gateway to call originator
if (!uri=~"sip:\+?[0-9]+@.*") {

if (method=="INVITE") {
sl_send_reply("403", "Call cannot be served here");

} else {
forward(uri:host, uri:port);

};
break;

};

account completed transactions via syslog
setflag(1);

free call destinations ... no authentication needed
if (is_user_in("Request-URI", "free-pstn") /* free destinations */

| uri=~"sip:[79][0-9][0-9][0-9]@.*" /* local PBX */
| uri=~"sip:98[0-9][0-9][0-9][0-9]") {

log("free call");
} else if (src_ip==192.168.0.10) {

our gateway doesn’t support digest authentication;
verify that a request is coming from it by source
address
log("gateway-originated request");

} else {
in all other cases, we need to check the request against
access control lists; first of all, verify request
originator’s identity

if (!proxy_authorize("gateway" /* realm */,
"subscriber" /* table name */)) {

proxy_challenge("gateway" /* realm */, "0" /* no qop */);
break;

};

authorize only for INVITEs -- RR/Contact may result in weird
things showing up in d-uri that would break our logic; our
major concern is INVITE which causes PSTN costs

if (method=="INVITE") {

does the authenticated user have a permission for local
calls (destinations beginning with a single zero)?
(i.e., is he in the "local" group?)
if (uri=~"sip:0[1-9][0-9]+@.*") {

if (!is_in_group("local")) {
sl_send_reply("403", "No permission for local calls");

36

Chapter 3. Server Operation

break;
};

the same for long-distance (destinations begin with two zeros")
} else if (uri=~"sip:00[1-9][0-9]+@.*") {

if (!is_in_group("ld")) {
sl_send_reply("403", " no permission for LD ");
break;

};
the same for international calls (three zeros)
} else if (uri=~"sip:000[1-9][0-9]+@.*") {

if (!is_in_group("int")) {
sl_send_reply("403", "International permissions needed");
break;

};
everything else (e.g., interplanetary calls) is denied
} else {

sl_send_reply("403", "Forbidden");
break;

};

}; # INVITE to authorized PSTN

}; # authorized PSTN

if you have passed through all the checks, let your call go to GW!

rewritehostport("192.168.0.10:5060");

forward the request now
if (!t_relay()) {

sl_reply_error();
break;

};

}

Use the serctl tool to maintain group membership. serctl acl grant
<username > <group > makes a user member of a group, serctl acl show
<username > shows groups of which a user is member, and serctl acl revoke
<username > [<group >] revokes user’s membership in one or all groups.

[jiri@cat sip_router]$ serctl acl grant john int
MySql Password:
+------+-----+---------------------+
| user | grp | last_modified |
+------+-----+---------------------+
| john | int | 2002-12-08 02:09:20 |
+------+-----+---------------------+

4. Accounting

In some scenarios, like termination of calls in PSTN, SIP administrators may wish to
keep track of placed calls. ser can be configured to report on completed transactions.
Reports are sent by default to syslog facility. Experimental support for RADIUS and
mysql accounting exists as well.

Note that ser is no way call-stateful. It reports on completed transactions, i.e., af-
ter a successful call set up is reported, it drops any call-related state. When a call is

37

Chapter 3. Server Operation

terminated, transactional state for BYE request is created and forgotten again after
the transaction completes. This is a feature and not a bug -- keeping only transac-
tional state allows for significantly higher scalability. It is then up to the accounting
application to correlate call initiation and termination events.

To enable call accounting, tm and acc modules need to be loaded, requests need to be
processed statefuly and labeled for accounting.

Example 3-7. Configuration with Enabled Accounting

#
$Id: iptel.cfg,v 1.38 2002/10/04 21:40:31 jiri Exp $
#
example: accounting calls to nummerical destinations
#

------------------ module loading ---------------------------------
-

loadmodule "modules/tm/tm.so"
loadmodule "modules/acc/acc.so"
loadmodule "modules/sl/sl.so"
loadmodule "modules/maxfwd/maxfwd.so"

----------------- setting module-specific parameters --------------
-

-- acc params --
set the reporting log level
modparam("acc", "log_level", 1)
number of flag, which will be used for accounting; if a message is
labeled with this flag, its completion status will be reported
modparam("acc", "acc_flag", 1)

------------------------- request routing logic ------------------
-

main routing logic

route{

/* ********* ROUTINE CHECKS ********************************** */

filter too old messages
if (!mf_process_maxfwd_header("10")) {

log("LOG: Too many hops\n");
sl_send_reply("483","Too Many Hops");
break;

};
if (len_gt(max_len)) {

sl_send_reply("513", "Wow -- Message too large");
break;

};

nummerical destinations will be labeled for accounting, others not
if (uri=~"sip:\+?[0-9]+@") {

setflag(1);
};

forward the request statefuly now; (we need *stateful* forwarding,
because the stateful mode correlates requests with replies and
drops retranmissions; otherwise, we would have to report on
every single message received)
if (!t_relay()) {

sl_reply_error();

38

Chapter 3. Server Operation

break;
};

}

5. Reliability

It is essential to guarantee continuous service operation even under erroneous con-
ditions, such as host or network failure. The major issue in such situations is transfer
of operation to a backup infrastructure and making clients use it.
The SIP standard’s use of DNS SRV records has been explicitly constructed to handle
with server failures. There may be multiple servers responsible for a domain and
referred to by DNS. If it is impossible to communicate with a primary server, a client
can proceed to another one. Backup servers may be located in a different geographic
area to minimize risk caused by areal operational disasters: lack of power, flooding,
earthquake, etc.

Unless there are redundant DNS servers, fail-over capability cannot be
guaranteed.

Unfortunately, at the moment of writing this documentation (end of December 2002)
only very few SIP products actually implement the DNS fail-over mechanism. Unless
networks with SIP devices supporting this mechanism are built, alternative mech-
anisms must be used to force clients to use backup servers. Such a mechanism is
disconnecting primary server and replacing him with a backup server locally. It un-
fortunately precludes geographic dispersion and requires network multihoming to
avoid dependency on single IP access. Another method is to update DNS when fail-
ure of the primary server is detected. The primary drawback of this method is its
latency: it may take long time until all clients learn to use the new server.

The easier part of the redundancy story is replication of ser data. ser relies on repli-
cation capabilities of its back-end database. This works with one exception: user lo-
cation database. User location database is a frequently accessed table, which is thus
cached in server’s memory to improve performance. Back-end replication does not
affect in-memory tables, unless server reboots. To facilitate replication of user location
database, server’s SIP replication feature must be enabled in parallel with back-end
replication.

The design idea of replication of user location database is easy: Replicate any suc-
cessful REGISTER requests to a peer server. To assure that digest credentials can be
properly verified, both servers need to use the same digest generation secret and
maintain synchronized time. A known limitation of this method is it does not repli-
cate user contacts entered in another way, for example using web interface through
FIFO server. The following script example shows configuration of a server that repli-
cates all REGISTERs.

Example 3-8. Script for Replication of User Contacts

#
$Id: ser.cfg,v 1.12 2002/10/21 02:40:06 jiri Exp $
#
demo script showing how to set-up usrloc replication
#

39

Chapter 3. Server Operation

----------- global configuration parameters -----------------------
-

debug=3 # debug level (cmd line: -dddddddddd)
fork=no
log_stderror=yes # (cmd line: -E)

------------------ module loading ---------------------------------
-

loadmodule "modules/mysql/mysql.so"
loadmodule "modules/sl/sl.so"
loadmodule "modules/tm/tm.so"
loadmodule "modules/maxfwd/maxfwd.so"
loadmodule "modules/usrloc/usrloc.so"
loadmodule "modules/registrar/registrar.so"
loadmodule "modules/auth/auth.so"

----------------- setting module-specific parameters --------------
-

digest generation secret; use the same in backup server;
also, make sure that the backup server has sync’ed time
modparam("auth", "secret", "alsdkhglaksdhfkloiwr")

------------------------- request routing logic ------------------
-

main routing logic

route{

initial sanity checks -- messages with
max_forwars==0, or excessively long requests
if (!mf_process_maxfwd_header("10")) {

sl_send_reply("483","Too Many Hops");
break;

};
if (len_gt(max_len)) {

sl_send_reply("513", "Message too big");
break;

};

if the request is for other domain use UsrLoc
(in case, it does not work, use the following command
with proper names and addresses in it)
if (uri==myself) {

if (method=="REGISTER") {

verify credentials
if (!www_authorize("foo.bar", "subscriber")) {

www_challenge("foo.bar", "0");
break;

};

if ok, update contacts and ...
save("location");
... if this REGISTER is not a replica from our
peer server, replicate to the peer server
if (!src_ip==backup.foo.bar) {

t_replicate("backup.foo.bar", "5060");
};
break;

};
do whatever else appropriate for your domain

40

Chapter 3. Server Operation

log("non-REGISTER\n");
};

}

6. Stateful versus Stateless Forwarding

ser allows both stateless and stateful request processing. This memo explains what
are pros and cons of using each method. The rule of thumb is "stateless for scalability,
stateful for services".

Stateless forwarding with the forward(uri:host, uri:port) action guarantees high scal-
ability. It withstands high load and does not run out of memory. A perfect use of
stateless forwarding is load distribution.

Stateful forwarding using the t_relay() action is known to scale worse. It can quickly
run out of memory and consumes more CPU time. Nevertheless, there are scenarios
which are not implementable without stateful processing. In particular:

• Accounting requires stateful processing to be able to collect transaction status and
issue a single report when a transaction completes.

• Forking only works with stateful forwarding. Stateless forwarding only forwards
to the default URI out of the whole destination set.

• DNS resolution. DNS resolution may be better server with stateful processing. If
a request is forwarded to a destination whose address takes long time to resolve,
a server process is blocked and unresponsive. Subsequent request retransmissions
from client will cause other processes to block too if requests are processed state-
lessly. As a result, ser will quickly run out of available processes. With stateful
forwarding, retransmissions are absorbed and do not cause blocking of another
process.

• Forwarding Services. All sort of services with the "forward_on_event" logic, which
rely on t_on_negative tm action must be processed statefuly.

7. Serving Multiple Domains

ser can be configured to serve multiple domains. To do so, you need to take the
following steps:

1. Create separate subscriber and location database table for each domain served
and name them uniquely.

2. Configure your script to distinguish between multiple served domains. Use
regular expressions for domain matching as described in Example 2-6.

3. Update table names in usrloc and auth actions to reflect names you created in
1.

Troubleshooting
This section gathers practices how to deal with errors known to occur frequently.

41

Chapter 3. Server Operation

1. SIP requests are replied by ser with "483 Too Many Hops" or "513 Message Too
Large"

In both cases, the reason is probably an error in request routing script which caused
an infinite loop. You can easily verify whether this happens by watching SIP traffic on
loopback interface. A typical reason for misrouting is a failure to match local domain
correctly. If a server fails to recognize a request for itself, it will try to forward it to
current URI in believe it would forward them to a foreign domain. Alas, it forwards
the request to itself again. This continues to happen until value of max_forwards
header field reaches zero or the request grows too big. Solutions is easy: make sure
that domain matching is correctly configured. See the Section called Domain Matching
in Chapter 2 for more information how to get it right.

2. Windows Messenger authentication fails.

The most likely reason for this problem is a bug in Windows Messenger. WM only
authenticates if server name in request URI equals authentication realm. After a chal-
lenge is sent by SIP server, WM does not resubmit the challenged request at all and
pops up authentication window again. If you want to authenticate WM, you need to
set up your realm value to equal server name. If your server has no name, IP address
can be used as realm too.

3. I receive "ERROR: t_newtran: transaction already in process" in my logs.

That looks like an erroneous use of tm module in script. tm can handle only one trans-
action per request. If you attempt to instantiate a transaction multiple times, ser will
complain. Anytime any of t_newtran, t_relay or t_relay_to actions is encountered,
tm attempts to instantiate a transaction. Doing so twice fails. Make sure that any of
this commands is called only once during script execution.

Notes
1. http://sipsak.berlios.de/

42

Chapter 4. Application Writing

ser offers several methods to leverage and extend its abilities. They primarily differ
in how easy-to-use and powerful they are. The easiest way is to couple ser with ex-
ternal applications via the exec module. This module allows execution of logic and
URI manipulation by external applications on request receipt. While very simple,
many useful services can be implemented this way. External applications can be writ-
ten in any programming language and do not be aware of SIP at all. They only care
of URIs. For example, an external shell script may send an email whenever a request
for a user arrives.

Example 4-1. Using External Scripts

send email if a request for johndoe arrives
if (uri=~"^sip:johndoe@") {

exec_msg("echo ’body: call arrived’|mail -s ’call for you’ johndoe");
}

The other extreme method for extending ser capabilities is to write new modules
in C. This method takes deeper understanding of ser internals but gains the high-
est flexibility. Modules can implement arbitrary brand-new commands upon which
ser scripts can rely on. Guidelines on module programming can be found in ser
programmer’s handbook available from iptel.org website.

There is a middle way too, which allows easy service creation without in-depth
knowledge of ser internals. ser allows external applications to link via its built-in
application FIFO server described in the next section.

Application FIFO Server
Application FIFO server is a very powerful method to program SIP services. The
most valuable benefit is it works with SIP-unaware applications written in any pro-
gramming language. Textual nature of the FIFO interface allows for easy integration
with a lot of existing programs. Today, ser ’s complementary web-interface, serweb ,
written in PHP, leverages the FIFO interface when displaying and changing user loca-
tion records stored in server’s memory. It uses this interface to send instant messages
too, without any knowledge of underlying SIP stack. Another application relying on
the FIFO interface is serctl , ser management utility. The command-line utility can
browse server’s in-memory user-location database, display running processes and
operational statistics.

The way the FIFO server works is similar to how /proc filesystem works on some
operating systems. It provides a human-readable way to access ser ’s internals. Ap-
plications dump their requests into the FIFO server and receive a status report when
request processing completes. ser exports a lot of its functionality located in both the
core and external modules through the FIFO server.

FIFO requests are formed easily. They begin with a command enclosed in colons and
followed by name of file or pipe (relative to /tmp/ path), to which a reply should be
printed. The first request line may be followed by additional lines with command-
specific parameters. For example, the t_uac FIFO command for initiating a transac-
tion allows to pass additional header fields and message body to a newly created
transaction. Each request is terminated by an empty line. Whole requests must be
sent by applications atomically in a single batch to avoid mixing with requests from
other applications. Requests are sent to pipe at which ser listens (filename config-
ured by the fifo config file option).

43

Chapter 4. Application Writing

An easy way to use the FIFO interface is via the serctl command-line tool. When
called along with "fifo", FIFO command name, and optional parameters, the tool gen-
erates a FIFO request and prints request result. The following example shows use
of this tool with the uptime and which commands. uptime returns server’s running
time, which returns list of available FIFO commands. Note that only the built-in FIFO
command set is displayed as no modules were loaded in this example.

Example 4-2. Use of serctl to Access FIFO Server

[jiri@cat test]$ serctl fifo uptime
Now: Fri Dec 6 17:56:10 2002
Up Since: Fri Dec 6 17:56:07 2002
Up time: 3 [sec]

[jiri@cat test]$ serctl fifo which
ps
which
version
uptime
print

The request which the serctl command-line tool sent to FIFO server looked like this:

Example 4-3. uptime FIFO Request

:uptime:ser_receiver_1114

This request contains no parameters and consists only of command name enclosed
in colons and name of file, to which a reply should be printed. FIFO replies consist
of a status line followed by optional parameters. The status line consists, similarly to
SIP reply status, of a three-digit status code and a reason phrase. Status codes with
leading digit 2 (200..299) are considered positive, any other values indicate an error.
For example, FIFO server returns "500" if execution of a non-existing FIFO command
is requested.

Example 4-4. FIFO Errors

[jiri@cat sip_router]$ sc fifo foobar
500 command ’foobar’ not available

A powerful feature of the FIFO server is the ability to export new commands from
modules for use by external applications. Currently, usrloc module exports FIFO
commands for maintaining in-memory user location database and tm module ex-
ports FIFO commands for management of SIP transactions. See the example in ex-
amples/web_im/send_im.php for how to initiate a SIP transaction (instant message)
from a PHP script via the FIFO server. This example uses FIFO command t_uac.
The command is followed by parameters: header fields and message body. The same
FIFO command can be used from other environments to send instant messages too.
The following example shows how to send instant messages from a shell script.

44

Chapter 4. Application Writing

Example 4-5. Sending IM From Shell Script

#!/bin/sh
#
call this script to send an instant message; script parameters
will be displayed in message body
#

cat > /tmp/ser_fifo <<EOF
:t_uac_from:hh
NOTIFY
sip:originator@foo.bar
sip:receiver@127.0.0.1
foo: bar_special_header
x: y
p_header: p_value
Contact: <sip:devnull@192.168.0.100:9 >
Content-Type: text/plain; charset=UTF-8

Hello world!!!! $@
.
EOF

See the Section called FIFO Commands Reference in Chapter 5 for a complete listing of
FIFO commands available with current ser distribution.

45

Chapter 4. Application Writing

46

Chapter 5. Reference

Core Options
Core options are located in beginning of configuration file and affect behaviour of the
server.

• debug - Set log level, this is number between 0 and 9. Default is 0.
• fork - If set to yes, the server will spawn children. If set to no, the main process

will be processing all messages. Default is yes.

Note: Disabling child spawning is useful mainly for debugging. When fork is turned off,
some features are unavailable: there is no attendant process, no pid file is generated,
and server listens only at one address. Make sure you are debugging the same inter-
face at which ser listens. The easiest way to do so is to set the interface using listen
option explicitly.

• log_stderror - If set to yes, the server will print its debugging information to
standard error output. If set to no, syslog will be used. Default is no (printing to
syslog).

• listen - list of all IP addresses or hostnames SER should listen on.

Note: This parameter may repeat several times, then SER will listen on all addresses. For
example, the following command-line options (equivalent to "listen" config option) may
be used: ser -l foo -l bar -p 5061 -l x -l y will listen on foo:5060, bar:5061 & x:5061 &
y:5061

• alias - Add IP addresses or hostnames to list of name aliases. All requests with
hostname matching an alias will satisfy the condition "uri==myself".

• dns - Uses dns to check if it is necessary to add a "received=" field to a via. Default
is no.

• rev_dns - Same as dns but use reverse DNS. Default is no.

• port - Listens on the specified port (default 5060). It applies to the last address
specified in listen and to all the following that do not have a corresponding "port"
option.

• maxbuffer - Maximum receive buffer size which will not be exceeded
by the auto-probing procedure even if the OS allows. Default value is
MAX_RECV_BUFFER_SIZE, which is 256k.

• children - Specifies how many children should be created when fork is set to yes.
Default value is CHILD_NO, which is 8. Running multiple children allows a server
to server multiple requests in parallel when request processing block (e.g., on DNS
lookup). Note that ser typically spawns additional processes, such as timer pro-
cess or FIFO server. If FIFO server is turned on, you can watch running processes
using the serctl utility.

• check_via - Turn on or off Via host checking when forwarding replies. Default is
no.

• syn_branch - Shall the server use stateful synonym branches? It is faster but not
reboot-safe. Default is yes.

• mem_log - Debugging level for memory statistics. Default is L_DBG -- memory
statistics are dumped only if debug is set high.

47

Chapter 5. Reference

• sip_warning - Should replies include extensive warnings? By default yes, it is
good for trouble-shooting.

• fifo - FIFO special file pathname, for example "/tmp/ser_fifo". Default is no file-
name -- no FIFO server is started then. We recommend to set it so that accompany-
ing applications such as serweb or serctl can communicate with ser .

• fifo_mode - Permissions of the FIFO special file.

• server_signature - Should locally-generated messages include server’s signa-
ture? By default yes, it is good for trouble-shooting.

• reply_to_via - A hint to reply modules whether they should send reply to IP
advertised in Via or IP from which a request came.

• user | uid - uid to be used by the server.

• group | gid - gid to be used by the server.

• loadmodule - Specifies a module to be loaded (for example
"/usr/lib/ser/modules/tm.so")

• modparam - Module parameter configuration. The commands takes three parame-
ters:

• module - Module in which the parameter resides.

• parameter - Name of the parameter to be configured.

• value - New value of the parameter.

Core Commands

Route Blocks and Process Control

Route block and process control keywords determine the order in which SIP requests
are processed.

• route[number]{...} - This marks a "route block" in configuration files. route blocks
are basic building blocks of ser scripts. Each route block contains a sequence of
SERactions enclosed in braces. Multiple route blocks can be included in a configu-
ration file. When script execution begins on request receipt, route block number 0
is entered. Other route blocks serve as a kind of sub-routines and may be entered
by calling the action route(n), where n is number of the block. The action break ex-
its currently executed route block. It stops script execution for route block number
0 or returns to calling route block otherwise.

Example 5-1. route

route[0] {
call routing block number 2

route(2);
}

route[2] {
forward("host.foo.bar", 5060);

}

• reply_route is used to restart request processing when a negative reply for a pre-
viously relayed request is received. It is only used along with tm module, which
stores the original requests and can return to their processing later. To activate pro-
cessing of a reply_route block, call the TM action t_on_negative(route_number)
before calling t_relay. When a negative reply comes back, the desired reply_route
will be entered and processing of the original request may continue.

48

Chapter 5. Reference

The set of actions applicable from within reply_route blocks is limited. Permitted
actions are URI-manipulation actions, logging and sending stateful replies using
t_reply_unsafe. Use of other actions may lead to unpredictable results. (We plan
to add syntactical checks in the future so that improper action use will be detected
during server start-up.)

Example 5-2. reply_route

reply_route[1] {
for some reason, the original forwarding attempt
failed, try at another URI
append_branch("sip:nonsense@iptel.org");
if this new attempt fails too, try another reply_route
t_on_negative("2");

}

• The action break exits currently executed route block. It stops script execution for
route block number 0 or returns to calling route block otherwise.

Note: We recommend to use break after any request forwarding or replying. This practice
helps to avoid erroneous scripts that continue execution and mistakenly send another
reply or forward a request to another place, resulting in protocol confusion.

Example: break;

• route(n) - call routing block route[n]{...}; when the routing block n finishes pro-
cessing, control is passed back to current block and processing continues.

• if (condition) statement - Conditional statement.

Example 5-3. Use of if

if (method=="REGISTER) {
log("register received\n");

};

• if - else - If-Else Conditional statement.

Example 5-4. Use of if-else

if (method=="REGISTER) {
log("register received\n");

} else {
log("non-register received\n");

};

Flag Manipulation

• setflag - Set flag in the message.

Example: setflag(1);

• resetflag - Reset flag in the message.

Example: resetflag(1);

49

Chapter 5. Reference

• isflagset - Test whether a particular flag is set.

Example 5-5. isflagset

if (isflagset(1)) {
....

};

Manipulation of URI and Destination Set

• rewritehost | sethost | seth - Rewrite host part of the Request URI.

Example: sethost("foo.bar.com");

• rewritehostport | sethostport | sethp - Rewrite host and port part of the Request
URI.

Example: sethostport("foo.bar.com:5060");

• rewriteuser | setuser | setu - Rewrite or set username part of the Request URI.

Example: setuser("joe");

• rewriteuserpass | setuserpass | setup - Rewrite or set username and password
part of the Request URI.

Example: setuserpass("joe:mypass");

• rewriteport | setport | setp - Rewrite or set port of the Request URI.

Example: setport("5060");

• rewriteuri | seturi - Rewrite or set the whole Request URI.

Example: seturi("sip:joe@foo.bar.com:5060");

• revert_uri - Revert changes made to the Request URI and use original Request
URI.

Example: revert_uri();

• prefix - Add prefix to username in Request URI.

Example: prefix("123");

• strip - Remove first n characters of username in Request URI.

Example: strip(3);

• append_branch - Append a new destination to destination set of the message.

50

Chapter 5. Reference

Example 5-6. Use of append_branch

redirect to these two destinations: a@foo.bar and b@foo.bar
1) rewrite the current URI
rewriteuri("sip:a@foo.bar");
2) append another entry to the destination ser
append_branch("sip:b@foo.bar");
redirect now
sl_send_reply("300", "redirection");

Message Forwarding

• forward(uri, port) - Forward the request to given destination statelessly. The uri
and port parameters may take special values ’uri:host’ and ’uri:port’ respectively,
in which case SER forwards to destination set in current URI. All other elements in
a destination set are ignored by stateless forwarding.

Example: forward("foo.bar.com"); # port defaults to 5060

• send - Send the message as is to a third party

Example: send("foo.bar.com");

Logging

• log([level], message) - Log a message.

Example: log(1, "This is a message with high log-level set to 1\n");

Logging is very useful for troubleshooting or attracting administrator’s attention
to unusual situations. ser reports log messages to syslog facility unless it is con-
figured to print them to stderr with the log_stderr configuration option. Log
messages are only issued if their log level exceeds threshold set with the debug
configuration option. If log level is omitted, messages are issued at log level 4.

Miscellaneous

• len_gt - If length of the message is greater than value given as parameter, the
command will return 1 (indicating true). Otherwise -1 (indicating false) will be
returned. It may take ’max_len’ as parameter, in which case message size is limited
to internal buffer size BUF_SIZE (3040 by default).

Example 5-7. Use of len_gt

deny all requests larger in size than 1 kilobyte
if (len_gt(1024)) {

sl_send_reply("513", "Too big");
break;

};

51

Chapter 5. Reference

Command Line Parameters

Note: Command-Line parameters may be overridden by configuration file options which
take precedence over them.

• -h - Displays a short usage description, including all available options.

• -c - Performs loop checks and computes branches.

• -r - Uses dns to check if it is necessary to add a "received=" field to a via.

• -R - Same as -r but uses reverse dns.

• -v - Turns on via host checking when forwarding replies.

• -d - Turns on debugging, multiple -d increase debugging level.

• -D - Runs ser in the foreground (it doesn’t fork into daemon mode).

• -E - Sends all the log messages to stderr.

• -V - Displays the version number.

• -f config-file - Reads the configuration from "config-file" (default ./ser.cfg).

• -l address - Listens on the specified address. Multiple -l mean listening on multiple
addresses. The default behaviour is to listen on all the ipv4 interfaces.

• -p port - Listens on the specified port (default 5060). It applies to the last address
specified with -l and to all the following that do not have a corresponding -p.

• -n processes-no - Specifies the number of children processes forked per interface
(default 8).

• -b max_rcv_buf_size - Maximum receive buffer size which will not be exceeded by
the auto-probing procedure even if the OS allows.

• -m shared_mem_size - Size of the shared memory which will be allocated (in
Megabytes).

• -w working-dir - Specifies the working directory. In the very improbable event that
will crash, the core file will be generated here.

• -t chroot-dir - Forces ser to chroot after reading the config file.

• -u uid - Changes the user id under which ser runs.

• -g gid - Changes the group id under which ser runs.

• -P pid-file - Creates a file containing the pid of the main ser process.

• -i fifo-path - Creates a fifo, useful for monitoring ser status.

serctl command
serctl is a command-line utility which allows to perform most of management tasks
needed to operate a server: adding users, changing their passwords, watching server
status, etc. Usage of utility is as follows:

Example 5-8. serctl usage

usage:
* subscribers *

serctl add <username > <password > <email > .. add a new subscriber (*)
serctl passwd <username > <passwd > change user’s password (*)
serctl rm <username > delete a user (*)

52

Chapter 5. Reference

serctl mail <username > send an email to a user
serctl alias show [<alias >] show aliases
serctl alias rm <alias > remove an alias
serctl alias add <alias > <uri > add an aliases

* access control lists *
serctl acl show [<username >] show user membership
serctl acl grant <username > <group > grant user membership (*)
serctl acl revoke <username > [<group >] grant user membership(s) (*)

* usrloc *
serctl ul show [<username >]................ show in-RAM online users
serctl ul rm <username > delete user’s UsrLoc entries
serctl ul add <username > <uri > introduce a permanent Ur-

Loc entry
serctl showdb [<username >] show online users flushed in DB

* server health *
serctl monitor show internal status
serctl ps show runnig processes
serctl fifo send raw commands to FIFO

Commands labeled with (*) will prompt for a MySQL password.
If the variable PW is set, the password will not be prompted.

Note: Prior to using the utility, you have to first set the environment variable SIP_DOMAINto
locally appropriate value (e.g., "foo.com"). It is needed for calculation of user credentials,
which depend on SIP digest realm.

Example 5-9. Example Output of Server Watching Command sc monitor

[cycle #: 2; if constant make sure server lives and fifo is on]
Server: Sip EXpress router(0.8.8 (i386/linux))
Now: Thu Sep 26 23:16:48 2002
Up Since: Thu Sep 26 12:35:27 2002
Up time: 38481 [sec]

Transaction Statistics
Current: 0 (0 waiting) Total: 606 (0 local)
Replied localy: 34
Completion status 6xx: 0, 5xx: 1, 4xx: 86, 3xx: 0,2xx: 519

Stateless Server Statistics
200: 6218 202: 0 2xx: 0
300: 0 301: 0 302: 0 3xx: 0
400: 0 401: 7412 403: 2 404: 1258 407: 116 408: 0 483: 0 4xx: 25 500: 0 5xx: 0
6xx: 0
xxx: 0
failures: 0

UsrLoc Stats
Domain Registered Expired
’aliases’ 9 0
’location’ 29 17

53

Chapter 5. Reference

Modules
Module description is currently located in READMEs of respective module directo-
ries. In the current ser distribution, there are the following modules:

• acc -- call accounting using syslog facility. Depends on tm.

• auth -- digest authentication. Depends on sl and mysql.

• exec -- execution of shell programs.

• jabber -- gateway between SIMPLE and Jabber instant messaging. Depends on tm
and mysql.

• maxfwd -- checking max-forwards header field.

• msilo -- message silo. Store for undelivered instant messages. Depends on tm and
mysql.

• mysql -- mysql database back-end.

• registrar, usrloc -- User Location database. Works in in-memory mode or with
mysql persistence support. Depends on sl, and on mysql if configured for use with
mysql.

• rr -- Record Routing (strict and loose)

• sl -- stateless User Agent server.

• sms -- SIMPLE/SMS gateway. Depends on tm. Takes special hardware.

• textops -- textual request operations.

• tm -- transaction manager (stateful processing).

The most frequently used actions exported by modules are summarized in Table 5-1.
For a full explanation of module actions, see documentation in respective module
directories in source distribution of ser .

Table 5-1. Frequently Used Module Actions

Command Modules Parameters Comments

addRecordRoute rr none record-route
request

append_hf textops header field append a header
field to the end of
request’s header

check_from auth none check if username
in from header field
matches
authentication id

check_to auth none check if username
in To header field
matched
authentication id

exec_uri exec command name execute an external
command and
replace destination
set with its output

54

Chapter 5. Reference

Command Modules Parameters Comments

is_in_group auth group name check if a user, as
identified by digest
credentials, is a
member of a group‘

is_user auth user id returns true if
request credentials
belong to a user

is_user_in auth user, group check if user is
member of a group;
user can be gained
from request URI
("Request-URI"), To
header field ("To"),
From header field
("From") or digest
credentials
("Credentials")

lookup usrloc table name attempt to translate
request URI using
user location
database; returns
false if no contact
for user found;

mf_process_maxfwd_header
maxfwd default

max_forwards
value

return true, if
request’s
max_forwards
value has not
reached zero yet; if
none is included in
the request, set it to
value in parameter

proxy_authorize auth realm, subscriber
table

returns true if
requests contains
proper credentials,
false otherwise

proxy_challenge auth realm, qop challenge user to
submit digest
credentials; qop
may be turned off
for backwards
compatibility with
elderly
implementations

rewriteFromRoute rr none strict routing: use
Route header field if
present in request

save usrloc table name for use in registrar:
save content of
Contact header
fields in user
location database
and reply with 200

55

Chapter 5. Reference

Command Modules Parameters Comments

search textops regular expression search for a regular
expression match in
request

sl_send_reply sl status code, reason
phrase

reply a request
statelessly

t_relay tm none stateful forwarding
to locations in
current destination
set

t_on_negative tm reply_route
number

set reply_route
block which shall be
entered if stateful
forwarding fails

t_replicate tm host, port number replicate a request
to a destination

FIFO Commands Reference
This section lists currently supported FIFO commands. Some of them are built-in in
ser core, whereas others are exported by modules. The most important exporters are
now tm and usrloc module. tm FIFO commands allow users to initiate transactions
without knowledge of underlying SIP stack. usrloc FIFO commands allow users to
access in-memory user-location database. Note that that is the only way how to affect
content of the data-base in real-time. Changes to MySql database do not affect in-
memory table unless ser is restarted.

Table 5-2. FIFO Commands

Command Module Parameters Comments

ps core none prints running ser
processes

which core none prints list of
available FIFO
commands

version core none prints version of
ser

uptime core none prints ser ’s
running time

sl_stats sl none prints statistics for
sl module

t_stats tm none print statistics for
tm module

t_hash tm none print occupation of
transaction table
(mainly for
debugging)

56

Chapter 5. Reference

Command Module Parameters Comments

t_uac_from tm method, sender’s
URI, destination
URI, optional
header fields
terminated by
empty line, message
body terminated by
a line with a single
dot

initiate a transaction

ul_stats usrloc none print usrloc
statistics

ul_rm usrloc table name, user
name

remove all user’s
contacts from
user-location
database

ul_rm_contact usrloc table name, user
name, contact

remove a user’s
contact from
user-location
database

ul_dump usrloc none print content of
in-memory
user-location
database

ul_flush usrloc none flush content of
in-memory
user-location cache
in persistent
database (MySQL)

ul_add usrloc table name, user
name, contact,
expiration, priority
(q)

insert a contact
address in
user-location
database

ul_show_contact usrloc table, user name show user’s contact
addresses in
user-location
database

Used Database Tables
ser includes MySQL support to guarantee data persistence across server reboots and
storage of users’ web environment. The data stored in the database include user pro-
files, access control lists, user location, etc. Note that users are not supposed to alter
the data directly, as it could introduce inconsistency between data on persistence stor-
age and in server’s memory. The following list enumerates used tables and explains
their purpose.

• subscriber -- table of users. It includes user names and security credentials, as well
as additional user information.

• reserved -- reserved user names. serweb does not permit creation of accounts with
name on this list.

• phonebook -- user’s personal phonebooks. Accessible via serweb .

57

Chapter 5. Reference

• pending -- table of unconfirmed subscription requests. Used by serweb .

• missed_calls -- table of missed calls. Can be fed by acc modules if mysql support
is turned on. Displayed by serweb .

• location -- user contacts. Typically updated through ser ’r registrar functionality.

• grp -- group membership. Used by auth module to determine whether a user
belongs to a group.

• event -- allows users to subscribe to additional services. Currently unused.

• aliases -- keeps track of alternative user names.

• active_sessions -- keeps track of currently active web sessions. For use by serweb .

• acc -- keeps track of accounted calls. Can be fed by acc module if mysql support is
turned on. Displayed by serweb .

• config -- maintains attribute-value pairs for keeping various information. Cur-
rently not used.

• silo -- message store for instant messages which could not have been delivered.

• version -- keeps version number of each table definition.

58

	iptel.org SIP Express Router v0.8.10 Admin's Guide
	Table of Contents
	Chapter 1. General Information
	About SIP Express Router (SER)
	About iptel.org
	Feature List
	Use Cases
	AddedValue ISP Services
	PC2Phone
	PBX Replacement

	About SIP Technology
	Known SER Limitations
	Licensing
	Obtaining Technical Assistance
	More Information
	Chapter 2. Introduction to SER
	Request Routing and SER Scripts
	Conditional Statements
	Operators and Operands
	URI Matching
	Domain Matching
	Numbering Plans

	Request URI Rewriting
	Destination Set
	External Modules
	Writing Scripts
	Default Configuration Script
	Stateful User Agent
	Redirect Server
	Executing External Script
	Reply Processing (Forward on Unavailable)

	Chapter 3. Server Operation
	Recommended Operational Practices
	HOWTOs
	Troubleshooting
	Chapter 4. Application Writing
	Application FIFO Server
	Chapter 5. Reference
	Core Options
	Core Commands
	Command Line Parameters
	serctl command
	Modules
	FIFO Commands Reference
	Used Database Tables

